点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:盈彩网投资平台交流群|盈彩网投资平台返点
首页>文化频道>要闻>正文

盈彩网投资平台交流群|盈彩网投资平台返点

来源:盈彩网投资平台注册网2022-04-27 17:48

  

巨额军火订单是美国的“战果”欧洲的“苦果”(观象台)******

  据美国《外交政策》杂志日前报道,美国国防部国防安全局的一份数据报告显示,2022年,由于北约成员国因俄乌局势大量储备武器,美国批准向北约盟友出售的武器数量和价格较2021年几乎翻了一倍,主要军售增加到24项,价值约280亿美元,其中包括对未来北约成员国芬兰出售价值12.4亿美元的武器。

  来自欧洲盟友的军火订单纷至沓来,美国军火商赚得盆满钵满。据外媒报道,美国军工企业的利润在2022年创下纪录,多家企业股价在年底都达到或接近历史最高点。过去12个月,美国大型军工企业诺思罗普·格鲁曼公司、洛克希德·马丁公司和雷神技术公司的股票分别上涨了40%、37%和17%。

  当美国军工复合体“开香槟庆祝”的同时,大西洋对岸的欧洲正吞下难咽的苦果——

  巨额军费开支进一步增加了欧洲各国的财政负担,扰乱其经济复苏进程。为了满足美国和北约定下的国防支出占比达到国内生产总值2%的“硬指标”,许多欧洲国家被迫在通胀高企、财政困难的条件下增加军费,而其中相当一部分将被用来采购美国军火。德国议会已批准国防部花费100亿欧元采购洛克希德·马丁公司制造的F—35战斗机,瑞士、英国、波兰等也已签下购买该型号战斗机的高额订单。2022年以来,美国国务院批准对爱沙尼亚、挪威、芬兰等多个欧洲国家进行军售。“欧盟观察家”网站不无讽刺地指出,原本可以投资于社会服务等领域的巨额资金被用于研发和采购武器。然而,“将欧洲的安全建立在军工企业及其投资者基于利润的梦想之上,只会助长未来的战争并加剧人类的苦难”。

  美国通过北约将陷入安全焦虑的欧洲拉上自己的“战车”,使欧洲战略自主进程受到重大打击。近年来,欧盟主张提高战略自主的呼声一直很高。乌克兰危机以来,美国加强了对欧洲在外交、军事、能源供应等多领域的捆绑,欧洲争取战略自主的行动力大大受限。依靠对欧高额军售,美国一边承诺以北约实现对欧洲集体安全的保护,强化对欧洲的控制;一边极力渲染所谓“竞争对手”威胁,挑唆俄欧矛盾,在欧洲制造分裂与对抗,并进一步遏制俄罗斯。说到底,美国就是要实现自己打压俄罗斯、牵制欧洲、喂饱军工集团的多重私利。英国iNews网站的文章直言,美国已经将乌克兰危机变成了“代理人战争”——一场可以在没有任何美军伤亡的情况下进行的战争,美国趁机巧取豪夺,掏空欧洲。

  美国持续给乌克兰危机火上浇油,使欧洲安全雪上加霜。时至今日,俄乌紧张局势尚未缓解,外溢风险持续显现,欧洲面临着能源危机、粮食短缺、难民增多、经济滞胀等多重挑战,传统安全和非传统安全威胁叠加交织。然而,美国却以“大国战略威胁”“化解地区危机”等为借口,持续扩充武器出口订单,搅动欧洲安全局势。美国军工集团眼中只有利益:“大炮一响、黄金万两”。美国国防工业承包商通用动力公司董事长诺瓦科维奇甚至露骨表态:“2022年是一个非常好的开端,虽然对人类而言,世界已变得越来越危险,但我们已看到需求稳定的良好信号。”

  于欧洲而言,真正的安全来自均衡、有效、可持续的地区安全构架,而非加入美国为一己私利拉起的对抗阵营。能否以清醒的判断和强大的凝聚力重回“战略自主”的轨道,是摆在欧洲面前的一道必答题。(李嘉宝)

  《 人民日报海外版 》( 2023年01月12日 第 06 版)

盈彩网投资平台交流群

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 杨祐宁大爆料 苏明玉这样的女生对他有吸引力

  • 伊朗无人机为何能贴脸拍美国航母

独家策划

推荐阅读
盈彩网投资平台代理400块钱,也可以买房了
2024-09-27
盈彩网投资平台计划实拍男模走秀踩鞋带摔倒身亡 观众以为在表演
2023-12-24
盈彩网投资平台登录驻丹麦大使邓英将离任 曾任外交部礼宾司副司长
2024-02-09
盈彩网投资平台论坛[访谈]慕容拖鞋:拒绝无目的
2024-03-24
盈彩网投资平台玩法李昊桐:已接近自己最好状态
2024-06-29
盈彩网投资平台走势图网易公布2018年第三季度财报
2024-05-17
盈彩网投资平台软件 中兵国调基金推介会在深圳隆重举行
2024-09-04
盈彩网投资平台手机版沈北新区聚力打造优质营商环境
2024-02-20
盈彩网投资平台投注这可能是人类史上最大银行抢劫案 就这样泡汤了
2024-04-26
盈彩网投资平台官方网站48岁吴奇隆宣布刘诗诗产子喜讯:小朋友来报道 母子平安
2024-04-20
盈彩网投资平台骗局你的个人敏感信息被多款App违规收集?20款APP因违规遭下架
2024-04-30
盈彩网投资平台客户端下载新修订的《国家以工代赈管理办法》3月1日起施行
2024-06-26
盈彩网投资平台充值澳洲一大树“哭泣”引百人膜拜 水务公司:水管...
2024-06-22
盈彩网投资平台技巧英特尔:苹果高通意外和解促使我们退出移动5G领域
2024-08-29
盈彩网投资平台官网网址“苏大强”当老师?周迅出席倪大红公开课 眼神专注侧颜清瘦
2024-01-11
盈彩网投资平台计划群张扬对话丨北京时间是怎样“生产”出来的?
2024-08-12
盈彩网投资平台网址 中国两只大熊猫“丁丁”和“如意”今日起程赴俄罗斯
2024-06-20
盈彩网投资平台客户端保罗遭驱逐勇士险胜火箭1-0
2024-07-31
盈彩网投资平台漏洞 “星爵”与施瓦辛格女儿办婚前派对,准岳父出席笑逐颜开
2024-03-30
盈彩网投资平台APP 东易日盛:与链家的合作主要以速美业务为主
2024-02-27
盈彩网投资平台app陈伟琳:八零后村医坚守畲乡十九年
2023-11-30
盈彩网投资平台乔布斯演讲为何很优秀?
2024-01-07
盈彩网投资平台娱乐 美国男子被自己养的大鸟杀死,他的100只神奇动物将被...
2024-05-28
盈彩网投资平台开户变形计:杜华儿子人怂话多
2024-02-01
加载更多
盈彩网投资平台地图